Boosted sparse nonlinear distance metric learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosted Sparse Non-linear Distance Metric Learning

This paper proposes a boosting-based solution addressing metric learning problems for high-dimensional data. Distance measures have been used as natural measures of (dis)similarity and served as the foundation of various learning methods. The efficiency of distance-based learning methods heavily depends on the chosen distance metric. With increasing dimensionality and complexity of data, howeve...

متن کامل

Sparse Compositional Metric Learning

We propose a new approach for metric learning by framing it as learning a sparse combination of locally discriminative metrics that are inexpensive to generate from the training data. This flexible framework allows us to naturally derive formulations for global, multi-task and local metric learning. The resulting algorithms have several advantages over existing methods in the literature: a much...

متن کامل

Bayesian Distance Metric Learning

This thesis explores the use of Bayesian distance metric learning (Bayes-dml) for the task of speaker verification using the i-vector feature representation. We propose a framework that explores the distance constraints between i-vector pairs from the same speaker and different speakers. With an approximation of the distance metric as a weighted covariance matrix of the top eigenvectors from th...

متن کامل

Distance Metric Learning Revisited

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

متن کامل

Hamming Distance Metric Learning

Motivated by large-scale multimedia applications we propose to learn mappings from high-dimensional data to binary codes that preserve semantic similarity. Binary codes are well suited to large-scale applications as they are storage efficient and permit exact sub-linear kNN search. The framework is applicable to broad families of mappings, and uses a flexible form of triplet ranking loss. We ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Analysis and Data Mining: The ASA Data Science Journal

سال: 2016

ISSN: 1932-1864

DOI: 10.1002/sam.11307